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Expressions are obtained for the sensitivity coefficients Oni/OY of the equilibrium state of 
a homogeneous multicomponent system in which chemical reactions occur, and in which ideal 
behavior of the components is not assumed; ni is the equilibrium amount of the ith chemical spe- 
cies, and Y is a parameter influencing the equilibrium. These thermodynamic identities repre- 
sent generalizations of the results of the same kind, recently reported for systems with ideal 
behavior [L Gutman, I. Fishtik and I. Nagyp~l, J. Math. Chem. 16 (1994) 229]. Also in the 
most general case, Oni/O Y is found to be equal to the sum of contributions originating from cer- 
tain special equilibria, previously named as Hessian response reactions. 

1. I n t r o d u c t i o n  

In a recent paper [1] we reported thermodynamic identities for the sensitivity 
coefficients of  equilibrium systems in which all the components  were assumed to 
obey ideal behavior. We now extend these results so as to hold for arbitrary homo- 
geneous chemically reacting systems at equilibrium. 

The notat ion used in this paper is the same as in [1], and therefore its details 
will not be specified here once again. The system considered consists of n distinct 
species A1, A2,...,  An whose chemical conversion is described by means o f m  (stoi- 
chiometrically independent) chemical equations: 

ur lA1-k -ur2A2-[ - . . .+ l / rnAn  = 0 ,  r =  1 , 2 , . . . , m .  (1) 

The system is homogeneous and is at equilibrium. The equilibrium amount  
(number of moles) of the species A i is denoted by ni whereas its initial amount  is nio, 

i = 1, 2, . . . ,  n. The total number of moles at equilibrium is nt; in the general case 
nt >~ nl + n2 + . .  • + nn, because some additional substances, not participating in the 
reactions (1), e.g. a solvent, may be present in the system. 

1 On leave from: Faculty of Science, University of Kragujevac, Kragujevac, Yugoslavia. 
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We are concerned with the response of  the equil ibrium compos i t ion  to the 
change of  a certain variable Y (which may  be temperature ,  pressure, initial a m o u n t  
of  a species, etc.). This response is expressed by means  of  the so-called sensitivity 
coefficients Oni/ O Y, i = 1 ,2 , . . . ,  n. 

The extent  of  the rth react ion (1) at equil ibrium is denoted  by (~, r = 1, 2, . . . ,  
m, and the Gibbs energy G of  the system is viewed as a funct ion of  the variables ~1, 
~2, . . . ,  ~m-We define [11 

= 02a/o ro s. (2) 

One of  the start ing points  in our  considerat ion is relation (3): 
m 

Onk/OY = 6 +  ~ u j k A j ,  (3) 
j= l  

in which A and Aj are the determinants  

GI1 GI2 . . .  Glm 

G21 G22 • . .  G2m 
A = 

and 

Gml Gin2 . • . Gram 

= 

G l l  G12 . . .  G I j - 1  XI G ~ j + I  . . .  Glm 

G21 G22 • . .  G2d-1 )(2 G2j+I  . . .  G2,,, 

Gml Gm2 . . .  Gmd-I X'm Grnd+l . . -  Gram 

(4) 

(5) 

n n 

o0/o   = + . (6) 
i=1 i=1 

and 

Fur ther ,  6 = 1 if Y = nk0 and 6 = 0 otherwise. The quanti t ies X1, X2, . . . ,  Xm, occur- 
ring in Aj, depend on the actual  choice of  the variable Y; Xr is associated with the 
r th react ion (1). More  details of  this mat te r  can be found in [1-3]. Recall  that  A is 
the Hessian de terminant  of  the system considered. 

Fo rmu la  (3) is a generally valid t he rmodynamic  identity; its der ivat ion can be 
found  in [1] or [3]. 

Let #i be the chemical potential  of  the ith species. Then 

G = Z l'liJ~i 
i=1 
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Because o f  the Gibbs-Duhem equation, the second sum on the right-hand side o f  
(6) is zero. Besides, because of the mass-balance conditions 

m 

n i = n i o + Z l / r i ~ r ,  i =  1,2,...,n, 
r=l  

o n e  h a s  Oni/O~r = tJri. T h i s  implies 
?1 

OG/O~r = ~ t:rilZ, 
i=I 

and, finally, 
n 

c~G/O~,O~s = Z u,i(O#i/O~s) . (7) 
i=1 

Formula (7) can be written in a more compact form by introducing the auxiliary 
quantities 

1 
IZ'i = R T  (O~i /O~s)  " 

Then in view of (2), 
n 

o,, = . (8) 
i=I 

Observe that because of G,s = Gs, ,  it holds that 
n n 

i=1 i=1 

Formula (8) is also a generally valid thermodynamic identity [2,3]. It will serve 
as the other starting point in our approach to sensitivity coefficients. 

2. The  main  results 

As before [1] we use the short-hand notation D ( i l ,  . . . ,  i , , -1 ,  k )  and D ( i l ,  . . . ,  
im-1, X) for the two determinants below: 

/'11 ,il //1 ,i2 

//2,il /]2,i2 
D(il ,  i2,- • -, ira-l, k) = 

l:rn,i I llm,i 2 

• .  • b ' l  , i , , , - i  l ' / 1 , k  

• • • ~2,im-i t:2,k 

• . . l:m,im_l llm,k 



7 6  L G u t m a n  e t  al.  / G e n e r a l  t h e r m o d y n a m i c  i d e n t i t i e s  f o r  s e n s i t i v i t y  c o e f f i c i e n t s  

D(il ,  i 2 , . . . ,  ira-l, X )  = 

lJl ,il lJl ,i2 • • • l]l  ,im_l ~ f  l 

b'2,il b'2,i= " • " b'2,i,,,_l ) ( 2  

lJm,il 1]m,i 2 . . . Llm,im_l X m  

In addition to this, we introduce two further abbreviations - T( i l ,  . . . ,  ira-l, k) and 
T(  il, . . ., i r a - l ,  X )  : 

T(i l ,  i 2 , . . . ,  in-I ,  k) = 

# 1  ,il ~1  ,/2 . • .  /Zl ,i,,_l Vl ,k  

]Z2,il /Z2,i2 . . • #2,i,,,_1 /J2,k 

I~m,il ]~rn,i2 • . . ]Zm,im_l lJrn,k 

(10) 

T( i l , i2 , .  . . , i m - l , X )  = 

/Zl ,il ~ 1  ,i2 " " " ]Zl , i , , - i  eY1 

/'Z2,il ~2, i2 "" " ]Z2,im- I X 2  

]Zm,il ~m,i= . -  . lZm,im_l - Y m  

(11) 

In the special case when Xr = #rk, r = 1, 2, . . . ,  m, the determinant  (11) is writ ten 

as T(  il, i2 , . . . ,  ira-l, I-Zk ). 
Observe that the determinants T(i l ,  . . . ,  i,,,-1, k) and T( i l ,  . . . ,  ira-l, X )  are 

obtained by changing the symbols u into # in the first m - 1 columns of  D ( i l , . . . ,  
ira-l, k)  and D( il , . . ., ira-l, X ) ,  respectively. 

Our main results can now be formulated as follows. 

Resul t  I 

A = --1 Z ~ D ( i l , i 2 , . .  •, i m - l , k ) T ( i l , i 2 , . . .  , im-I,/Zk) . 
m 

1 ~<il < i2  < . . . < i , , , - i  ~<n k = l  

(12) 

Resul t  2 

1 
Onk/O Y = 8 + -~ 

1 
Onk /OY  = 6 + -~ 

~.£ D(il ,  i2 , . - . ,  ira-l, k ) T ( i l ,  i2,- .- ,  tin-l, X) ,  
1~<il < i 2 < . . .  <im-1 <~n (13) 

Z T( i l ,  i 2 , . . . ,  ira-l, k )D( i l ,  i 2 , . . . ,  ira-:, X ) .  
1~<il <i2 <...<im-I <~n (14) 
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To the authors' best knowledge, none of the thermodynamic identities (12)- 
(14) was previously reported. 

3. P roo f  of  formula  (12) 

Introduce the matrices v = [[urill and # = II r, ll, both of dimension rn x n and 
thus rewrite eq. (8) as 

ars = (vl~t)~s, (15) 

where the superscript t indicates transposition. Bearing in mind (15), we expand 
the determinant/1, eq. (4), by means of the Binet-Cauchy formula to obtain 

i.e. 

/1= 22, 
1 <~il <i2<...<im<~n 

# 1  ,il ~1 ,i2 

# 2 , i l  # 2 , i 2  
× 

#m,i !  #m,i2 

/ " l , i l  Z)l , i2 - • • V l , i rn_ l  /21,ira 

V2 , i l  b '2 , i2  • • " b '2 , i rn- I  M2,/m 

llrn,il l/rn,i2 • . . 1.Ira,ira_ 1 1)rn,i,,, 

• . .  #l,im_~ #1,i~, 

• . . # 2 , i , , - i  # 2 , i r a  

• " " #m,i,,,_l #m,im 

/I = ~ D ( i l , i 2 , . . .  , i m - l , i m ) T ( i l , i 2 , . . .  , im- l ,# i , , ) .  
l <<.i~ <i2 <... <i,.,,~n 

(16) 

Equation (12) follows now from the fact that since the summands in (16) are prod- 
ucts of two determinants of order m, 

1 n 

m 
1 ~<il < i 2  < ...  <in ~ n  1 ~i l  < i 2  < . . .  <i,,,-I ~ n  k = l  

4. P roo f  of  formula  (14) 

We start with formula (3) and expand the determinant Aj with respect to i tsj th 
column: 

tl'! m 

Onk/OY= 8 + 5 ~-~ ujk ~(--1)i+JxiA(iF). (17) 
j = l  i = 1  
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Here and later A(i~) denotes the minor, obtained from A by deleting its ith row 
andj th  column. 

We next employ eq. (8) and expand A(it]) with respect to all its m - 1 columns. 
This expansion technique was already used in [1] and there it was explained in due 
detail. The final result is 

n n n 

A(i~) = ~ ~---~... ~ /dl,il~2,/2 ...].£j__l,ij_lI.Zj+l,ij...[-£rn,im-i 
i1=1 i2=1 i m _ l = l  

x D(il, i2 , . . . ,  ira-l, im)(ilm). (18) 

In harmony with the previously introduced notation, D(il, i2, . . . ,  im-l, im) (ilrn) 
stands for the minor of D(il,/2, . . . ,  ira-l, ira), obtained by deleting its ith row and 
ruth column. 

Whenever at least two among the indices i l ,  /2, . . . ,  im-I are equal, then D(il, i2, 
. . . ,  im-1, ira) (ilm) = 0. Consequently, the only non-zero contributions to the right- 
hand side of (18) come from summands in which all the indices il,/2, . . . ,  ira-1 are 
mutually distinct. 

Taking the above into account, we can follow a reasoning fully analogous to 
what in [1] was used to deduce eq. (33) from eq. (30). By means of it, eq. (18) is 
transformed into (19). The details of these (otherwise quite perplexed) algebraic 
manipulations can be found in [1] and are not repeated here once again. We thus 
arrive at 

A(i~) = ~ T(il, i2 , . . . ,  ira-l, im)(l'lm)D(il, i2 , . . . ,  ira-l, im)(ilm ) • (19) 
il < i2 < . . .  < i,.-1 

Substituting (19) back into (17) and making a few pertinent rearrangements, we 
obtain 

1 ~ (-1)m+JL'jkT(il, i2 , . . . ,  tm-1, im)(jlm) cgnk / O Y = ~ 4- ~ i~ 
< i 2 < . . . ' < i m _  I 

)J × - 1 ) m + i x i O ( i l , i 2 , . . . , i m _ l , i m ) ( i l m  • (20) 

Equation (14) is now straightforwardly obtained from (20) by observing that the 
Laplace expansions of T( il, i2, . . . ,  in-l,  k) and D( il, i2, . . . ,  ira-l, X),  with respect to 
the ruth column, are just 

rn 

T(il ,  i 2 , . . . ,  ~m-1, k) = ~-~(--1)'+Jejk T(i l ,  i2,.-., i~-l, im)Ulm) , 
j = l  

m 

D(i l , /2 , - . . ,  ira-l, X) = ~ ( - 1 ) m + i X i D ( i l ,  i2, . .- ,  ira-l, im)(ilm). 
i=1  
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5. P roo f  of  formula  (13) 

Formula (13) could have been deduced in a fully analogous manner to that 
used for identity (14). However, there is a much faster route towards (13). 

Equation (8) possesses a certain peculiar symmetry. Namely, eq. (8) is invariant 
on the exchange of the characters u and # (which, on the other hand, pertain to com- 
pletely different physico-chemical quantities). This property is best seen from 
eq. (9). 

Now, the u/#-invariance will be inherited by all formulas deduced from eq. (8). 
In particular, it is permitted to modify eq. (14) so that all symbols # occurring in 
the first m - 1 columns of T ( i l ,  i2, . . . ,  i ~ - l ,  k )  are turned into u, and all symbols u 
occurring in the first m - 1 columns of D(i l ,  i2, . . . ,  i~-1,  X )  are switched into #. 
This yields eq. (13). 

6. Concerning the interpretat ion of  the identifies (13) and (14) 

In our previous researches on sensitivity analysis [1,4,5] (which all were devoted 
to systems with ideal behavior), we introduced the concept of Hessian response 
reactions, namely of equilibria of the form 

UlA1 + u2A2 + . . .  + unAn = 0 (21) 

for which ui = D( i l ,  i z , . . . ,  ira-l, i), i = 1, 2 , . . . ,  n. 
Because (21) is in fact an equilibrium, the name "reaction" for it is somewhat 

misleading. Therefore, in what follows, instead of "Hessian response reaction" we 
shall use the more appropriate term "Hess ian  response  equi l ibr ium ". 

Each selection of m - 1  distinct indices il, i2, . . . ,  ira-I, such that 
1 ~<il </2 < . . .  <im-1 <~n, defines a particular Hessian equilibrium 9£(il, /2, . . . ,  

im-1). More details on Hessian equilibria are found elsewhere [1,4]. 
From the form of eqs. (13) and (14) the following interpretation is immediate: 

According to both eqs. (13) and (14), the sensitivity coefficient O n k / O Y  is equal to 
the sum of contributions coming from Hessian equilibria. 

(a) According to eq. (13), the contribution of ~( i l ,  . . . ,  i,,,-1) is equal to 
( 1 /  A )O(  il, . . ., im-1, k ) T (  il, . . ., im-1, X), where O (  il, . . ., ira-l, k )  is recognized as 
the stoichiometric coefficient of the kth species in the respective Hessian equili- 
brium. 

(b) According to eq. (14), the contribution of ~(i~, . . . ,  ira-l) is equal to 
( 1 /  A ) T (  il ,  . . ., ira-l, k ) D (  il, . . . ,  ira-l, J(), where D(  il, . . . ,  ira-l, X) is recognized as 
the change of the quantity X in the respective Hessian equilibrium. 

As seen from the identity (12), the Hessian determinant A is also expressible in 
the form of a sum of contributions associated with Hessian equilibria. 

What remains obscure in (13) and (14) is the possible thermodynamic interpreta- 
tion of the terms T ( i l ,  . . . ,  ira-l, k)  and T ( i l ,  . . . ,  ira-a, X) .  A n  additional difficulty 
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is that  the expressions (1/A)D(il ,  . . . ,  ira-l, k)T(il  . . . .  , ira-l, X) and (1 /A)T( i l ,  
. . . ,  ira-l, k)D(il, . . . ,  ira-l, X), both associated with the same Hessian equilibrium 
J((il,  . . . ,  i,,-1 ) may  have different numerical values. We intend to resolve some of  
these problems in the future [6]. 

7. A special  case: Sys t ems  wi th  ideal  b e h a v i o r  

Special cases of  the formulas (12)-(14) for systems in which all species exhibit 
an ideal behavior were reported previously [1,5]. In order to obtain these expres- 
sions one has to use the specific form which the quantities Grs and #ri attain in sys- 
tems with ideal behavior,  namely [2,3] 

" - ' n i  n l 1 ( ~  ) ( ~  ) Gr, = ~-~--u,-iUsi--- uri usi (22) 
i= l  n t  \ i=1 ] i=1 

and 

I.Zri = - -  Igri  - -  _ _  lff r i  . 

/'/i g/t i=1 

By combining (22) with (5) and (17) one obtains [1] z 

1 [ ~ D(il, i2,..., im-1, k)D(il, i2,... ,  im-1, X) 
On~/OY= ~5 + ~ i~ <i2<...<i,,-, ni~ni2.., ni,,_, 

1 Z D(il, i2, . . . ,  tm-2, Au, k)D(il, i2 , . . - ,  im-2, Bu, X) 

l ' l t  il  < i 2  < . . .  < i r a - 2  r l i l l~ l i2  " " " l ' l i m - 2  

where 

n 

D(il, i2, . . . ,  ira-2, Z~b', k) = Z D(il, i2, . . . ,  ira-2, i, k) , 
i=1 

(23) 

(24) 

n 

D(il, i2, . . . ,  ira-2, Au, X) = Z D ( i l ,  i2, . . . ,  tm-2, i, X ) .  
i = l  

The above formula (24) is the same as eq. (13) in [1] 2 Details of  the sensitivity anal- 
ysis of  ideal systems, based on eq. (24) can be found elsewhere [1,5]. In the spirit 

2 A small, but awkward sign error occurred in eq. (13) in [1]: the sign between the two summations 
on the right-hand side of (13) is not plus but minus (as in the present eq. (24)). The same error should 
be eliminated also from eqs. (16), (17), (28) and from the formula given at the end of section 6 of 

h + l  1 h + l  [ll. Ineq. (35) in [l], (-1) - should be replaced by (-1) . 
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ofeq. (24) the sensitivity coefficients are presented as sums of contributions coming 
from Hessian and non-Hessian response equilibria, ~(i l , /2,  . . . ,  i,,,-1 ) and 2g(il,/2, 
. . . ,  ira-2), respectively [1,5]. Recall that N'(il,/2, . . . ,  im-2) is an equilibrium of the 

?1 form (21), for which ui = }--~-k=l D(i l ,  i 2 , . . . ,  t~-2,  k,  i), i = 1, 2 , . . . ,  n [1]. 
Another way to arrive at the ideal-behavior special cases of eqs. (12)-(14) is to 

substitute into them formula (23). From (12)-(14) is immediately seen that the only 
terms which have to be (can be) simplified are the determinants T( i l ,  i2, . . . ,  6,,-1, 
#k) ,  T ( i l ,  i2, . . . ,  i r a - l ,  k) and T(i~, i2, . . . ,  i r a - l ,  ) ( ) .  A straightforward calculation 
yields 

/ / I  ,il 

/-'2,il 

T( i l ,  i 2 , . . . ,  ira-l, f2) . . . .  

l./m,i I 

X fi 

where Aur = Url + 11r2 "J- . . .  -t- 1.Jrn, 

//1,12 • " • /11 ,im-i z ~ b ' l  

/-"2,i2 . . • / /2 , i , ,_ l  z ~ / / 2  

Urn,is . . .  llm,i,,,_i A l , 'm  

xi~ . . .  xi,,_) - 1 

f2r  = ]~rk o r  

.(21 

n2 
. . .  , (25)  

nm 
0 

uric or Xr, r = 1, 2, . . . ,  m, and 
Xi  = ni /n t  is the mole fraction of the species Ai, i = 1 ,2 , . . . ,  n. 

8. Discussion and  concluding r e m a r k s  

In this paper we proved novel general thermodynamic identities for the Hessian 
determinant, eq. (12), and for the sensitivity coefficients, eqs. (13) and (14). These 
are proper generalizations of results recently obtained [1,4,5] for systems which 
behave ideally. Our main finding is that also in the most general case Hessian 
response equilibria play a significant role in determining the sensitivity coefficients. 
In particular, it is possible to present both the Hessian determinant and the sensitiv- 
ity coefficients as sums of increments associated in some way with Hessian equili- 
bria. 

When studying the sensitivity coefficients of equilibrium systems with ideal 
behavior [1,5] we encountered two types of response equilibria: Hessian ~C(il, i2, 
. . . ,  i,,,-1 ) and non-Hessian N'(il, i2, . . . ,  i,,,-2). At first glance it may look surprising 
that non-Hessian response equilibria do not appear in the thermodynamic formal- 
ism developed for the general case. This may give the impression that the general 
formalism is simpler than its special case for ideal systems; compare, for instance, 
eqs. (13) and (14) with eq. (24). A detailed analysis reveals that the dependence of 
the sensitivity coefficients on non-Hessian response equilibria is contained, in a 
concealed form, in the T-determinants, and especially in eq. (25). Another 
approach to the same problem is to present the sensitivity coefficients as sums of 
contributions coming from pairs of Hessian equilibria [6]. 

Not all terms occurring in our identities have a straightforward physico- 
chemical (thermodynamic) interpretation, either in the general case or in the special 
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case of  ideal systems. This, in particular, applies to the T-determinants, eqs. (10), 
(11) and (25). Work aimed at a better understanding of  the properties of  these quan- 
tities is in progress [6]. 
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